
Муниципальное бюджетное общеобразовательное учреждение Палагайская средняя общеобразовательная школа

РАБОЧАЯ ПРОГРАММА

УЧЕБНОГО ПРЕДМЕТА

КИМИХ

С ИСПОЛЬЗОВАНИЕМ ОБОРУДОВАНИЯ ЦЕНТРА «ТОЧКА РОСТА»

8—9 классы УМК О.С . Габриелян

на 2023-2024 учебный год

Составитель: учитель химии

Абашева Е.Л.

Пояснительная записка

Рабочая программа по предмету «Химия» для 8 класса составлена на основании следующих нормативных документов:

- 1. Федерального закона от 29.12.2012 года № 273-Ф3 «Об образовании в Российской Федерации»;
- 2. Федерального государственного образовательного стандарта основного общего образования, утвержденного Приказом Министерства образования и науки Российской Федерации от 17.12.2010 г № 1897 «Об утверждении федерального государственного образовательного стандарта основного общего образования» с изменениями, утвержденного Приказом Министерства образования и науки Российской Федерации от 31.12.2015 № 1577 «О внесении изменений в федеральный государственный образовательный стандарт основного общего образования, утвержденный Приказом Министерства образования и науки Российской Федерации от 17.12.2010 г № 1897»;
- 3. Образовательной программы основного общего образования МБОУ Палагайской СОШ;
- 4. Примерной программы основного общего образования по химии (базовый уровень) и авторской программы О.С. Габриеляна (Габриелян О.С. программа курса химии для 8-11 классов общеобразовательных учреждений М: Дрофа,2010г).
- 5. Устава МБОУ Палагайской СОШ;
- 6. Учебного плана МБОУ Палагайской СОШ на 2023-2024 учебный год;
- 7. Положения о рабочей программе МБОУ Палагайской СОШ.
- 8. Примерной программы воспитания (одобренной решением федерального учебнометодического объединения по общему образованию (протокол от 2 июня 2020 г. №2/20)).
- 9. Методических рекомендаций по созданию и функционированию в общеобразовательных организациях, расположенных в сельской местности и малых городах, центров образования естественно-научной и технологической направленностей («Точка роста») (Утверждены распоряжением Министерства просвещения Российской Федерации от 12 января 2021 г. No P-6).

Центры образования естественно-научной направленности «Точка роста» созданы с целью развития у обучающихся естественно-научной, математической, информационной грамотности, формирования критического и креативного мышления, совершенствования навыков естественно-научной направленности, а также для практической отработки учебного материала по учебным предметам «Физика», «Химия», «Биология».

В состав центра «Точка роста» по химии входит цифровые лаборатории, компоненты лабораторного и демонстрационного оборудования, коллекции минералов и наборы химических реактивов. Данное оборудование предназначено для использования во время проведения практических работ, демонстрационных экспериментов, подготовке проектов и в практическом задании на ОГЭ.

Использование оборудования центра «Точка роста» позволяет создать условия:

- для расширения содержания школьного химического образования;
- для повышения познавательной активности обучающихся в естественнонаучной области;
- для развития личности ребенка в процессе обучения химии, его способностей, формирования и удовлетворения социально значимых интересов и потребностей;
- для работы с одарёнными школьниками, организации их развития в различных областях

образовательной, творческой деятельности.

Применяя цифровые лаборатории на уроках химии, учащиеся смогут выполнить множество лабораторных работ и экспериментов по программе основной школы.

Методический комплект

- 1. Габриелян О.С. Химия: 8 класс: учебник для общеобразовательных учреждений. М.: Дрофа.
- 2. Учебник «Химия 9 класс»/ О.С.Габриелян, И.Г.Остроумов, С.А.Сладков Москва «Просвещение» 2019

Место учебного предмета в учебном плане

Рабочая программа 8-9 классов рассчитана на 136 часов (2 часа в неделю) согласно базисному плану и учебному плану образовательного учреждения на 2023-2024 уч. год

Цели и задачи предмета

- освоение важнейших знаний об основных понятиях и законах химии, химической символике;
- овладение умениями наблюдать химические явления, проводить химический эксперимент, производить расчеты на основе химических формул веществ и уравнений химических реакций;
- развитие познавательных интересов и интеллектуальных способностей в процессе проведения химического эксперимента, самостоятельного приобретения знаний в соответствии с возникающими жизненными потребностями;
- воспитание отношения к химии как к одному из фундаментальных компонентов естествознания и элементу общечеловеческой культуры;
- применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

Основные формы, технологии, методы обучения; типы уроков

Основной формой организации учебного процесса является классно-урочная система. В качестве дополнительных форм организации образовательного процесса используется система консультационной поддержки, индивидуальных занятий, самостоятельная работа учащихся с использованием современных информационных технологий.

Преобладающей формой контроля выступают письменный (самостоятельные и контрольные работы) и устный опрос (собеседование).

Планируемые результаты освоения учебного предмета, курса

Личностными результатами изучения предмета «Химия» являются следующие умения:

-осознавать единство и целостность окружающего мира, возможности его познаваемости и объяснимости на основе достижений науки;

- -постепенно выстраивать собственное целостное мировоззрение: осознавать потребность и готовность к самообразованию, в том числе и в рамках самостоятельной деятельности вне школы;
- -оценивать жизненные ситуации с точки зрения безопасного образа жизни и сохранения здоровья;
- -оценивать экологический риск взаимоотношений человека и природы.
- -формировать экологическое мышление: умение оценивать свою деятельность и поступки других людей с точки зрения сохранения окружающей среды гаранта жизни и благополучия людей на Земле.

Метапредметными результатами изучения курса «Химия» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

- -самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности;
- -выдвигать версии решения проблемы, осознавать конечный результат, выбирать из предложенных и искать самостоятельно средства достижения цели;
- -составлять (индивидуально или в группе) план решения проблемы;
- -работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно;
- -в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

Познавательные УУД:

- -анализировать, сравнивать, классифицировать и обобщать факты и явления. Выявлять причины и следствия простых явлений.
- -осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;
- -строить логическое рассуждение, включающее установление причинно-следственных связей.
- -создавать схематические модели с выделением существенных характеристик объекта.
- -составлять тезисы, различные виды планов (простых, сложных и т.п.).
- -преобразовывать информацию из одного вида в другой (таблицу в текст и пр.).
- -уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

Коммуникативные УУД:

Самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т.д.).

Предметными результатами изучения предмета являются следующие умения:

1) формирование первоначальных систематизированных представлений о веществах, их превращениях и практическом применении; овладение понятийным аппаратом и

символическим языком химии;

- 2) осознание объективной значимости основ химической науки как области современного естествознания, химических превращений неорганических и органических веществ как основы многих явлений живой и неживой природы; углубление представлений о материальном единстве мира;
- 3) овладение основами химической грамотности: способностью анализировать и объективно оценивать жизненные ситуации, связанные с химией, навыками безопасного обращения с веществами, используемыми в повседневной жизни; умением анализировать и планировать экологически безопасное поведение в целях сохранения здоровья и окружающей среды;
- 4) формирование умений устанавливать связи между реально наблюдаемыми химическими явлениями и процессами, происходящими в микромире, объяснять причины многообразия веществ, зависимость их свойств от состава и строения, а также зависимость применения веществ от их свойств;
- 5) приобретение опыта использования различных методов изучения веществ: наблюдения за их превращениями при проведении несложных химических экспериментов с использованием лабораторного оборудования и приборов;
- 6) формирование представлений о значении химической науки в решении современных экологических проблем, в том числе в предотвращении техногенных и экологических катастроф;

Выпускник научится:

- характеризовать основные методы познания: наблюдение, измерение, эксперимент;
- описывать свойства твердых, жидких, газообразных веществ, выделяя их существенные признаки;
- раскрывать смысл основных химических понятий «атом», «молекула», «химический элемент», «простое вещество», «сложное вещество», «валентность», «химическая реакция», используя знаковую системухимии;
- раскрывать смысл законов сохранения массы веществ, постоянства состава, атомномолекулярнойтеории;
 - различать химические и физическиеявления;
 - называть химическиеэлементы;
 - определять состав веществ по ихформулам;
 - определять валентность атома элемента всоединениях;
 - определять тип химическихреакций;
 - называть признаки и условия протекания химическихреакций;
 - выявлять признаки, свидетельствующие о протекании химической реакции при выполнении химическогоопыта;
 - составлять формулы бинарныхсоединений;
 - составлять уравнения химическихреакций;
 - соблюдать правила безопасной работы при проведенииопытов;
 - пользоваться лабораторным оборудованием ипосудой;
 - вычислять относительную молекулярную и молярную массывеществ;
 - вычислять массовую долю химического элемента по формулесоединения;
- вычислять количество, объем или массу вещества по количеству, объему, массе реагентов или продуктовреакции;
- характеризовать физические и химические свойства простых веществ: кислорода и водорода;
 - получать, собирать кислород иводород;
 - распознавать опытным путем газообразные вещества: кислород, водород;

- раскрывать смысл закона Авогадро;
- раскрывать смысл понятий «тепловой эффект реакции», «молярныйобъем»;
- характеризовать физические и химические свойстваводы;
- раскрывать смысл понятия «раствор»;
- вычислять массовую долю растворенного вещества врастворе;
- приготовлять растворы с определенной массовой долей растворенноговещества;
- называть соединения изученных классов неорганическихвеществ;
- характеризовать физические и химические свойства основных классов неорганических веществ: оксидов, кислот, оснований, солей;
 - определять принадлежность веществ к определенному классусоединений;
 - составлять формулы неорганических соединений изученныхклассов;
 - проводить опыты, подтверждающие химические свойства изученных классов неорганическихвеществ;
- распознавать опытным путем растворы кислот и щелочей по изменению окраски индикатора;
 - характеризовать взаимосвязь между классами неорганическихсоединений;
 - раскрывать смысл Периодического закона Д.И.Менделеева;
- объяснять физический смысл атомного (порядкового) номера химического элемента, номеров группы и периода в периодической системе Д.И.Менделеева;
- объяснять закономерности изменения строения атомов, свойств элементов в пределах малых периодов и главныхподгрупп;
- характеризовать химические элементы (от водорода до кальция) на основе их положения в периодической системе Д.И. Менделеева и особенностей строения ихатомов;
- составлять схемы строения атомов первых 20 элементов периодической системы Д.И. Менделеева;
 - раскрывать смысл понятий: «химическая связь», «электроотрицательность»;
- характеризовать зависимость физических свойств веществ от типа кристаллической решетки;
 - определять вид химической связи в неорганическихсоединениях;
 - изображать схемы строения молекул веществ, образованных разными видами химическихсвязей;
 - раскрывать смысл понятий «ион», «катион», «анион», «электролиты», «неэлектролиты», «электролитическая диссоциация», «окислитель», «степень окисления», «восстановитель», «окисление», «восстановление»;
 - определять степень окисления атома элемента всоединении;
 - раскрывать смысл теории электролитической диссоциации;
 - составлять уравнения электролитической диссоциации кислот, щелочей, солей;
- объяснять сущность процесса электролитической диссоциации и реакций ионного обмена;
 - составлять полные и сокращенные ионные уравнения реакцииобмена;
 - определять возможность протекания реакций ионногообмена;
 - проводить реакции, подтверждающие качественный состав различныхвеществ;
 - определять окислитель ивосстановитель;
 - составлять уравнения окислительно-восстановительных реакций;
 - называть факторы, влияющие на скорость химическойреакции;
 - классифицировать химические реакции по различнымпризнакам;
 - характеризовать взаимосвязь между составом, строением и свойстваминеметаллов;
 - проводить опыты по получению, собиранию и изучению химических свойств газообразных веществ: углекислого газа,аммиака;

- распознавать опытным путем газообразные вещества: углекислый газ иаммиак;
- характеризовать взаимосвязь между составом, строением и свойствамиметаллов;
- называть органические вещества по их формуле: метан, этан, этилен, метанол, этанол, глицерин, уксусная кислота, аминоуксусная кислота, стеариновая кислота, олеиновая кислота, глюкоза;
 - оценивать окружающей влияние химического загрязнения среды на организмчеловека;
 - грамотно обращаться с веществами в повседневнойжизни
- определять возможность протекания реакций некоторых органических веществ с кислородом, водородом, металлами, основаниями, галогенами.

Выпускник получит возможность научиться:

- выдвигать и проверять экспериментально гипотезы о химических свойствах веществ на основе их состава и строения, их способности вступать в химические реакции, о характере и продуктах различных химическихреакций;
- характеризовать вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- составлять молекулярные и полные ионные уравнения по сокращенным ионным уравнениям;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учетом степеней окисления элементов, входящих в егосостав;
- составлять уравнения реакций, соответствующих последовательности превращений неорганических веществ различныхклассов;
- выдвигать и проверять экспериментально гипотезы о результатах воздействия различных факторов на изменение скорости химическойреакции;
 - приобретенные знания для экологически грамотного • использовать поведения в окружающейсреде;
- использовать приобретенные ключевые компетенции при выполнении проектов и учебно-исследовательских задач по изучению свойств, способов получения и распознавания веществ;
 - объективно оценивать информацию о веществах и химическихпроцессах;
- критически относиться к псевдонаучной информации, недобросовестной рекламе в средствах массовойинформации;
- осознавать значение теоретических знаний ПО практической химии ДЛЯ деятельности человека;
- создавать модели и схемы для решения учебных и познавательных задач; понимать необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии идр.

Содержание учебного предмета, курса в 8 классе

Тема 1. Введение в химию (6 ч)

Химия — наука о веществах, их свойствах и превращениях.

Понятие о химическом элементе и формах его существования: свободных атомах, простых и сложных вещества

Превращения веществ. Отличие химических реакций от физических явлений. Роль химии в жизни человека.

Краткие сведения из истории возникновения и развития химии. Период алхимии. Понятие о философском камне. Химия в XVI в. Развитие химии на Руси. Роль отечественных ученых в становлении химической науки - работы М. В. Ломоносова. А. М. Бутлерова. Д. И. Менделеева.

Химическая символика. Знаки химических элементов и происхождение их названий. Химические формулы. Индексы и коэффициенты. Относительные атомная и молекулярная массы. Расчет массовой доли химического элемента по формуле вещества.

Периодическая система химических элементов Д. И. Менделеева, ее структура: малые и большие периоды, группы и подгруппы (главная и побочная). Периодическая система как справочное пособие для получения сведений о химических элементах.

Расчётные задачи. 1. Нахождение относительной молекулярной массы вещества по его химической формуле. 2. Вычисление массовой доли химического элемента в веществе по его формуле.

Практическая работа № 1

Правила техники безопасности при работе в химическом кабинете. Лабораторное оборудование и обращение с ним.

Практическая работа № 2

Наблюдение за горящей свечой.

Предметные результаты обучения

- использовать при характеристике веществ понятия: «атом», «молекула», «химический элемент», «химический знак, или символ», «вещество», «простое вещество», «сложное вещество», «свойства веществ», «химические явления», «физические явления», «коэффициенты», «индексы», «относительная атомная масса», «относительная молекулярная масса», «массовая доля элемента»;
- знать: предметы изучения естественнонаучных дисциплин, в том числе химии; химические символы, их названия и произношение;
- классифицировать вещества по составу на простые и сложные;
- различать: тела и вещества; химический элемент и простое вещество;
- описывать: формы существования химических элементов (свободные атомы, простые вещества, сложные вещества); табличную форму Периодической системы химических элементов; положение элемента в таблице Д. И. Менделеева, используя понятия «период», «группа», «главная подгруппа», «побочная подгруппа»; свойства веществ (твердых, жидких, газообразных);
- объяснять сущность химических явлений (с точки зрения атомно-молекулярного учения) и их принципиальное отличие от физических явлений;
- характеризовать: основные методы изучения естественных дисциплин (наблюдение, эксперимент, моделирование); вещество по его химической формуле согласно плану: качественный состав, тип вещества (простое или сложное), количественный состав, относительная молекулярная масса, соотношение масс элементов в веществе, массовые доли

элементов в веществе (для сложных веществ); роль химии (положительную и отрицательную) в жизни человека, аргументировать свое отношение к этой проблеме;

- вычислять относительную молекулярную массу вещества и массовую долю химического элемента в соединениях;
- проводить наблюдения свойств веществ и явлений, происходящих с веществами;
- соблюдать правила техники безопасности при проведении наблюдений и лабораторных опытов.

Метапредметные результаты обучения

Учащийся должен уметь:

- определять проблемы, т. е. устанавливать несоответствие между желаемым и действительным;
- составлять сложный план текста;
- владеть таким видом изложения текста, как повествование;
- под руководством учителя проводить непосредственное наблюдение;
- под руководством учителя оформлять отчет, включающий описание наблюдения, его результатов, выводов;
- использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере знаков химических элементов, химических формул);
- использовать такой вид материального (предметного) моделирования, как физическое моделирование (на примере моделирования атомов и молекул);
- получать химическую информацию из различных источников;
- определять объект и аспект анализа и синтеза;
- определять компоненты объекта в соответствии с аспектом анализа и синтеза;
- осуществлять качественное и количественное описание компонентов объекта;
- определять отношения объекта с другими объектами;
- определять существенные признаки объекта.

Тема 2. Атомы химических элементов (10 ч)

Атомы как форма существования химических элементов. Основные сведения о строении атомов. Доказательства сложности строения атомов. Опыты Резерфорда. Планетарная модель строения атома.

Состав атомных ядер: протоны и нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса».

Изменение числа протонов в ядре атома - образование новых химических элементов.

о завершенном и незавершенном электронном слое (энергетическом уровне).

Периодическая система химических элементов Д. И. Менделеева и строение атомов: физический смысл порядкового номера элемента, номера группы, номера периода.

Изменение числа электронов на внешнем электронном уровне атома химического элемента - образование положительных и отрицательных ионов. Ионы, образованные атомами металлов и неметаллов. Причины изменения металлических и неметаллических свойств в периодах и группах.

Образование бинарных соединений. Понятие об ионной связи. Схемы образования ионной связи.

Взаимодействие атомов химических элементов-неметаллов между собой - образование двухатомных молекул простых веществ. Ковалентная неполярная химическая связь.

Электронные и структурные формулы.

Взаимодействие атомов химических элементов-неметаллов между собой - образование бинарных соединений неметаллов. Электроотрицательность. Понятие о ковалентной полярной связи.

Взаимодействие атомов химических элементов-металлов между собой - образование металлических кристаллов. Понятие о металлической связи.

Демонстрации. Модели атомов химических элементов. Периодическая система химических элементов Д. И. Менделеева.

Предметные результаты обучения

- использовать при характеристике атомов понятия: «протон», «нейтрон», «электрон», «химический элемент», «массовое число», «изотоп», «электронный слой», «энергетический уровень», «элементы-металлы», «элементы-неметаллы»; при характеристике веществ понятия «ионная связь», «ионы», «ковалентная неполярная связь», «ковалентная полярная связь», «электроотрицательность», «валентность», «металлическая связь»;
- описывать состав и строение атомов элементов с порядковыми номерами 1—20 в Периодической системе химических элементов Д. И. Менделеева;
- составлять схемы распределения электронов по электронным слоям в электронной оболочке атомов; схемы образования разных типов химической связи (ионной, ковалентной, металлической);
- объяснять закономерности изменения свойств химических элементов (зарядов ядер атомов, числа электронов на внешнем электронном слое, число заполняемых электронных слоев, радиус атома, электроотрицательность, металлические и неметаллические свойства) в периодах и группах (главных подгруппах) Периодической системы химических элементов Д. И. Менделеева с точки зрения теории строения атома;
- сравнивать свойства атомов химических элементов, находящихся в одном периоде или главной подгруппе Периодической системы химических элементов Д. И. Менделеева (зарядов ядер атомов, числа электронов на внешнем электронном слое, число заполняемых электронных слоев, радиус атома, электроотрицательность, металлические и неметаллические свойства);
- давать характеристику химических элементов по их положению в Периодической системе химических элементов Д. И. Менделеева (химический знак, порядковый номер, период, группа, подгруппа, относительная атомная масса, строение атома заряд ядра, число протонов и нейтронов в ядре, общее число электронов, распределение электронов по электронным слоям);

- определять тип химической связи по формуле вещества;
- приводить примеры веществ с разными типами химической связи;
- характеризовать механизмы образования ковалентной связи (обменный), ионной связи, металлической связи;
- устанавливать причинно-следственные связи: состав вещества тип химической связи;
- составлять формулы бинарных соединений по валентности;
- находить валентность элементов по формуле бинарного соединения.

Метапредметные результаты обучения

Учащийся должен уметь:

- формулировать гипотезу по решению проблем;
- составлять план выполнения учебной задачи, решения проблем творческого и поискового характера, выполнения проекта совместно с учителем;
- составлять тезисы текста;
- владеть таким видом изложения текста, как описание;
- использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере составления схем образования химической связи);
- использовать такой вид материального (предметного) моделирования, как аналоговое моделирование;
- использовать такой вид материального (предметного) моделирования, как физическое моделирование (на примере моделей строения атомов);
- определять объекты сравнения и аспект сравнения объектов;
- выполнять неполное однолинейное сравнение;
- выполнять неполное комплексное сравнение;
- выполнять полное однолинейное сравнение.

Тема 3. Простые вещества (5ч)

Положение металлов и неметаллов в периодической системе химических элементов Д. И. Менделеева. Важнейшие простые вещества - металлы: железо, алюминий, кальций, магний, натрий, калий. Общие физические свойства металлов.

Важнейшие простые вещества - неметаллы, образованные атомами кислорода, водорода, азота, серы, фосфора, углерода. Способность атомов химических элементов к образованию нескольких простых веществ - аллотропия. Аллотропные модификации кислорода, фосфора и олова. Металлические и неметаллические свойства простых веществ. Относительность деления простых веществ на металлы и неметаллы.

Постоянная Авогадро. Количество вещества. Моль. Молярная масса. Молярный объем газообразных веществ. Кратные единицы количества вещества — миллимоль и киломоль, миллимолярная и киломолярная массы вещества, миллимолярный и киломолярный объемы газообразных веществ.

Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Расчетные задачи. 1. Вычисление молярной массы веществ по химическим формулам. 2. Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Демонстрации. Некоторые металлы и неметаллы количеством вещества 1 моль. Модель молярного объема газообразных веществ.

Предметные результаты обучения

Учащийся должен уметь:

- использовать при характеристике веществ понятия: «металлы», «пластичность», «теплопроводность», «электропроводность», «неметаллы», «аллотропия», «аллотропные видоизменения, или модификации»;
- описывать положение элементов-металлов и элементов-неметаллов в Периодической системе химических элементов Д. И. Менделеева;
- классифицировать простые вещества на металлы и неметаллы, элементы;
- определять принадлежность неорганических веществ к одному из изученных классов металлы и неметаллы;
- доказывать относительность деления простых веществ на металлы и неметаллы;
- характеризовать общие физические свойства металлов;
- устанавливать причинно-следственные связи между строением атома и химической связью в простых веществах металлах и неметаллах;
- объяснять многообразие простых веществ таким фактором, как аллотропия;
- описывать свойства веществ (на примерах простых веществ металлов и неметаллов);
- соблюдать правила техники безопасности при проведении наблюдений и лабораторных опытов;
- использовать при решении расчетных задач понятия: «количество вещества», «моль», «постоянная Авогадро», «молярная масса», «молярный объем газов», «нормальные условия»;
- проводить расчеты с использованием понятий: «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Метапредметные результаты обучения

- составлять конспект текста;
- самостоятельно использовать непосредственное наблюдение;
- самостоятельно оформлять отчет, включающий описание наблюдения, его результатов, выводов;
- выполнять полное комплексное сравнение;
- выполнять сравнение по аналогии

Тема 4. Соединения химических элементов (14 ч)

Степень окисления. Определение степени окисления элементов по химической формуле соединения. Составление формул бинарных соединений, общий способ их называния. Бинарные соединения: оксиды, хлориды, сульфиды и др. Составление их формул. Представители оксидов: вода, углекислый газ и негашеная известь. Представители летучих водородных соединений: хлороводород и аммиак.

Основания, их состав и названия. Растворимость оснований в воде. Таблица растворимости гидроксидов и солей в воде. Представители щелочей: гидроксиды натрия, калия и кальция. Понятие о качественных реакциях. Индикаторы. Изменение окраски индикаторов в щелочной среде.

Кислоты, их состав и названия. Классификация кислот. Представители кислот: серная, соляная и азотная. Изменение окраски индикаторов в кислотной среде.

Соли как производные кислот и оснований. Их состав и названия. Растворимость солей в воде. Представители солей: хлорид натрия, карбонат и фосфат кальция.

Аморфные и кристаллические вещества.

Межмолекулярные взаимодействия. Типы кристаллических решеток: ионная, атомная, молекулярная и металлическая. Зависимость свойств веществ от типов кристаллических решеток.

Вещества молекулярного и немолекулярного строения. Закон постоянства состава для веществ молекулярного строения.

Чистые вещества и смеси. Примеры жидких, твердых и газообразных смесей. Свойства чистых веществ и смесей. Их состав. Массовая и объемная доли компонента смеси. Расчеты, связанные с использованием понятия доля.

Расчётные задачи. 1. Расчет массовой и объемной долей компонентов смеси веществ. 2. Вычисление массовой доли вещества в растворе по известной массе растворенного вещества и массе растворителя. 3. Вычисление массы растворяемого вещества и растворителя, необходимых для приготовления определенной массы раствора с известной массовой долей растворенного вещества.

Практическая работа № 3

Анализ почвы и воды.

Практическая работа № 4

Приготовление раствора сахара и определение его в растворе.

Демонстрации. Образцы оксидов, кислот, оснований и солей. Модели кристаллических решеток хлорида натрия, алмаза, оксида углерода (IV). Способы разделения смесей, дистилляция воды.

Лабораторные опыты. 1. Знакомство с образцами веществ разных классов. 2. Разделение смесей.

Предметные результаты обучения

- использовать при характеристике веществ понятия: «степень окисления», «валентность», «оксиды», «основания», «щелочи», «качественная реакция», «индикатор», «кислоты», «кислоты», «кислоты», «бескислородные кислоты», «кислотная среда», «щелочная среда», «нейтральная среда», «шкала рН», «соли», «аморфные вещества», «кристаллические вещества», «кристаллическая решетка», «ионная кристаллическая решетка», «атомная кристаллическая решетка», «молекулярная кристаллическая решетка», «металлическая кристаллическая решетка», «смеси»;
- классифицировать сложные неорганические вещества по составу на оксиды, основания, кислоты и соли; основания, кислоты и соли по растворимости в воде; кислоты по основности и содержанию кислорода;
- определять принадлежность неорганических веществ к одному из изученных классов (оксиды, летучие водородные соединения, основания, кислоты, соли) по формуле;
- описывать свойства отдельных представителей оксидов (на примере воды, углекислого газа, негашеной извести), летучих водородных соединений (на примере хлороводорода и аммиака), оснований (на примере гидроксидов натрия, калия и кальция), кислот (на примере серной кислоты) и солей (на примере хлорида натрия, карбоната кальция, фосфата кальция);
- определять валентность и степень окисления элементов в веществах;
- составлять формулы оксидов, оснований, кислот и солей по валентностям и степеням окисления элементов, а также зарядам ионов, указанным в таблице растворимости кислот, оснований и солей;
- составлять названия оксидов, оснований, кислот и солей; сравнивать валентность и степень окисления; оксиды, основания, кислоты и соли по составу;
- использовать таблицу растворимости для определения растворимости веществ;
- устанавливать генетическую связь между оксидом и гидро-ксидом и наоборот; причинно-следственные связи между строением атома, химической связью и типом кристаллической решетки химических соединений;
- характеризовать атомные, молекулярные, ионные металлические кристаллические решетки; среду раствора с помощью шкалы рН;
- приводить примеры веществ с разными типами кристаллической решетки;
- проводить наблюдения за свойствами веществ и явлениями, происходящими с веществами;
- соблюдать правила техники безопасности при проведении наблюдений и опытов;
- исследовать среду раствора с помощью индикаторов; экспериментально различать кислоты и щелочи, пользуясь индикаторами;
- использовать при решении расчетных задач понятия «массовая доля элемента в веществе», «массовая доля растворенного вещества», «объемная доля газообразного вещества»;
- проводить расчеты с использованием понятий «массовая доля элемента в веществе», «массовая доля растворенного вещества», «объемная доля газообразного вещества».

Метапредметные результаты обучения

- составлять на основе текста таблицы, в том числе с применением средств ИКТ;
- под руководством учителя проводить опосредованное наблюдение
- под руководством учителя оформлять отчет, включающий описание эксперимента, его результатов, выводов;
- осуществлять индуктивное обобщение (от единичного достоверного к общему вероятностному), т. е. определять общие существенные признаки двух и более объектов и фиксировать их в форме понятия или суждения;
- осуществлять дедуктивное обобщение (подведение единичного достоверного под общее достоверное), т. е. актуализировать понятие или суждение, и отождествлять с ним соответствующие существенные признаки одного или более объектов;
- определять аспект классификации;
- осуществлять классификацию;
- знать и использовать различные формы представления классификации.

Тема 5. Изменения, происходящие с веществами (11ч)

Понятие явлений как изменений, происходящих с веществами. Явления, связанные с изменением кристаллического строения вещества при постоянном его составе, физические явления. Физические явления в химии: дистилляция, кристаллизация, выпаривание и возгонка веществ, центрифугирование.

Явления, связанные с изменением состава вещества, - химические реакции. Признаки и условия протекания химических реакций. Понятие об экзо - и эндотермических реакциях. Реакции горения как частный случай экзотермических реакций, протекающих с выделением света.

Закон сохранения массы веществ. Химические уравнения. Значение индексов и коэффициентов. Составление уравнений химических реакций.

Расчеты по химическим уравнениям. Решение задач на нахождение количества вещества, массы или объема продукта реакции по количеству вещества, массе или объему исходного вещества. Расчеты с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Реакции разложения. Понятие о скорости химических реакций. Катализаторы. Ферменты.

Реакции соединения. Каталитические и некаталитические реакции. Обратимые и необратимые реакции.

Реакции замещения. Электрохимический ряд напряжений металлов, его использование для прогнозирования возможности протекания реакций между металлами и растворами кислот. Реакции вытеснения одних металлов из растворов их солей другими металлами.

Реакции обмена. Реакции нейтрализации. Условия протекания реакций обмена в растворах до конца.

Типы химических реакций (по признаку «число и состав исходных веществ и продуктов реакции») на примере свойств воды. Реакция разложения - электролиз воды. Реакции соединения - взаимодействие воды с оксидами металлов и неметаллов. Понятие «гидроксиды». Реакции замещения - взаимодействие воды с щелочными и щелочноземельными металлами. Реакции обмена (на примере гидролиза сульфида алюминия и карбида кальция).

Практическая работа № 5

Признаки химических реакций

Расчётные задачи. 1. Вычисление по химическим уравнениям массы или количества вещества по известной массе или количеству вещества одного из вступающих в реакцию веществ или продуктов реакции. 2. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса исходного вещества, содержащего определенную долю примесей. 3. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса раствора и массовая доля растворенного вещества.

Предметные результаты обучения:

Учащийся должен уметь:

- классифицировать химические реакции по числу и составу исходных веществ и продуктов реакции; тепловому эффекту; на-правлению протекания реакции; участию катализатора;
- использовать таблицу растворимости для определения возможности протекания реакций обмена; электрохимический ряд напряжений (активности) металлов для определения возможности протекания реакций между металлами и водными растворами кислот и солей;
- наблюдать и описывать признаки и условия течения химических реакций, делать выводы на основании анализа наблюдений за экспериментом;
- проводить расчеты по химическим уравнениям на нахождение количества, массы или объема продукта реакции по количеству, массе или объему исходного вещества; с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Метапредметные результаты обучения

Учащийся должен уметь:

- составлять на основе текста схемы, в том числе с применением средств ИКТ;
- самостоятельно оформлять отчет, включающий описание эксперимента, его результатов, выводов;
- использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере уравнений химических реакций);
- различать объем и содержание понятий;
- различать родовое и видовое понятия;
- осуществлять родовидовое определение понятий.

Тема 6. Теория электролитической диссоциации и свойства классов неорганических соединений (20 ч)

Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциации электролитов с различным типом химической связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Ионные уравнения реакций. Условия протекания реакции обмена между электролитами до конца в свете ионных представлений. Классификация ионов и их свойства.

Кислоты, их классификация. Диссоциация кислот и их свойства в свете теории электролитической диссоциации. Молекулярные и ионные уравнения реакций кислот. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов. Взаимодействие кислот с оксидами металлов. Взаимодействие кислот с основаниями - реакция нейтрализации. Взаимодействие кислот с солями. Использование таблицы растворимости для характеристики химических свойств кислот.

Основания, их классификация. Диссоциация оснований и их свойства в свете теории электролитической диссоциации. Взаимодействие оснований с кислотами, кислотными оксидами и солями. Использование таблицы растворимости для характеристики химических свойств оснований. Разложение нерастворимых оснований при нагревании. Соли, их классификация и диссоциация различных типов солей. Свойства солей в свете теории электролитической диссоциации. Взаимодействие солей с металлами, условия протекания этих реакций. Взаимодействие солей с кислотами, основаниями и солями. Использование таблицы растворимости для характеристики химических свойств солей.

Обобщение сведений об оксидах, их классификации и химических свойствах.

Генетические ряды металлов и неметаллов. Генетическая связь между классами неорганических веществ

Окислительно-восстановительные реакции. Окислитель и восстановитель, окисление и восстановление.

Реакции ионного обмена и окислительно-восстановительные реакции. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Свойства простых веществ - металлов и неметаллов, кислот и солей в свете представлений об окислительно-восстановительных процессах.

Практическая работа № 6

Свойства кислот, оснований, оксидов и солей.

Практическая работа № 7.

Решение экспериментальных задач.

Предметные результаты обучения:

- использовать при характеристике превращений веществ понятия: «раствор», «электролитическая диссоциация», «электролиты», «неэлектролиты», «степень диссоциации», «сильные электролиты», «слабые электролиты», «катионы», «анионы», «кислоты», «основания», «соли», «ионные реакции», «несолеобразующие оксиды», «солеобразующие оксиды», «соновные оксиды», «основные оксиды», «средние соли», «кислые соли», «основные соли», «генетический ряд», «окислительно-восстановительные реакции», «окислитель», «восстановитель», «окисление», «восстановление»;
- описывать растворение как физико-химический процесс;

- иллюстрировать примерами основные положения теории электролитической диссоциации; генетическую взаимосвязь между веществами (простое вещество оксид гидроксид соль);
- характеризовать общие химические свойства кислотных и основных оксидов, кислот, оснований и солей с позиций теории электролитической диссоциации; сущность электролитической диссоциации веществ с ковалентной полярной и ионной химической связью; сущность окислительно-восстановительных реакций;
- приводить примеры реакций, подтверждающих химические свойства кислотных и основных оксидов, кислот, оснований и солей; существование взаимосвязи между основными классами неорганических веществ;
- классифицировать химические реакции по «изменению степеней окисления элементов, образующих реагирующие вещества»;
- составлять уравнения электролитической диссоциации кислот, оснований и солей; молекулярные, полные и сокращенные ионные уравнения реакций с участием электролитов; уравнения окислительно-восстановительных реакций, используя метод электронного баланса; уравнения реакций, соответствующих последовательности («цепочке») превращений неорганических веществ различных классов;
- определять окислитель и восстановитель, окисление и восстановление в окислительно-восстановительных реакциях;
- устанавливать причинно-следственные связи: класс вещества химические свойства вещества;
- наблюдать и описывать реакции между электролитами с помощью естественного (русского или родного) языка и языка химии;
- проводить опыты, подтверждающие химические свойства основных классов неорганических веществ.

Метапредметные результаты обучения

- делать пометки, выписки, цитирование текста;
- составлять доклад;
- составлять на основе текста графики, в том числе с применением средств ИКТ;
- владеть таким видом изложения текста, как рассуждение;
- использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере уравнений реакций диссоциации, ионных уравнений реакций, полуреакций окисления-восстановления);
- различать компоненты доказательства (тезис, аргументы и форму доказательства);
- осуществлять прямое индуктивное доказательство.

Тематическое планирование в 8 классе

Nº		Всего		В том числе	
п/п	Наименование разделов	часов	Уроки	Практические работы	Контрольные работы
1.	Тема 1. Введение	6	4	2	
2.	Тема 2. Атомы химических элементов	10	9		1
3.	Тема 3. Простые вещества	7	7		
4.	Тема 4. Соединения химических элементов	14	11	2	1
5.	Тема 5. Изменения, происходящие с веществами	11	9	1	1
6.	Тема 6. Растворение. Растворы. Свойства растворов электролитов	20	17	2	1
	Итого:	68	57	7	4

Содержание учебного предмета, курса в 9 классе

Повторение и обобщение сведений по курсу 8 класса. Химические реакции (15 ч)

Характеристика элемента по его положению в Периодической системе химических элементов Д. И. Менделеева. Закономерности изменения свойств элементов и их соединений в периодах и группах в свете представлений о строении атомов элементов. Значение периодического закона.

Типы химических связей и типы кристаллических решеток. Взаимосвязь строения и свойств веществ.

Свойства оксидов, кислот, оснований и солей в свете теории электролитической диссоциации и окисления-восстановления. Понятие о переходных элементах. Амфотерность. Генетический ряд переходного элемента. Периодический закон и Периодическая система химических элементов

Д. И. Менделеева. Обобщение сведений о химических реакциях. Понятие о скорости химической реакции. Факторы, влияющие на скорость химических реакций. Катализаторы и катализ. Ингибиторы. Антиоксиданты.

Практические работы.

№1.Решение экспериментальных задач по теме «Электролитическая диссоциация»

Лабораторные работы. 1. Получение гидроксида цинка и исследование его свойств.

2. Признаки химических реакций.

Демонстрации с применением оборудования «Точка роста»

Различные формы таблиц Периодической системы. Модели атомов элементов I—III периодов. Зависимость скорости химической реакции от природы реагирующих веществ. Зависимость скорости химической реакции от концентрации реагирующих веществ. Зависимость скорости химической реакции от площади соприкосновения реагирующих веществ («кипящий слой»). Зависимость скорости химической реакции от температуры реагирующих веществ. Гомогенный и гетерогенный катализы. Ферментативный катализ. Ингибирование.

Лабораторные опыты. Получение гидроксида цинка и исследование его свойств. Моделирование построения периодической таблицы. Замещение железом меди в растворе сульфата меди (II). Зависимость скорости химической реакции от природы реагирующих веществ на примере взаимодействия различных кислот с различными металлами. Зависимость скорости химической реакции от концентрации реагирующих веществ на примере взаимодействия цинка с соляной кислотой различной концентрации. Зависимость скорости химической реакции от площади соприкосновения реагирующих веществ. Моделирование «кипящего слоя». Зависимость скорости химической реакции от температуры реагирующих веществ на примере взаимодействия оксида меди (II) с раствором серной кислоты при различных температурах. Разложение пероксида водорода с помощью диоксида марганца и каталазы. Обнаружение каталазы в некоторых пищевых продуктах. Ингибирование взаимодействия соляной кислоты с цинком уротропином.

Неметаллы и их соединения (27 ч)

Положение неметаллов в периодической системе химических элементов Д.И. Менделеева. Общие свойства неметаллов.

Водород – химический элемент и простое вещество. Физические и химические свойства водорода. Получение водорода в лаборатории. Получение водорода в промышленности. Применение водорода.

Галогены: физические и химические свойства. Соединения галогенов: хлороводород, хлороводородная кислота и ее соли.

Кислород – химический элемент и простое вещество. Озон. Состав воздуха. Физические и химические свойства кислорода. Получение и применение кислорода.

Сера: физические и химические свойства. Соединения серы: сероводород, сульфиды, оксиды серы. Серная, сернистая и сероводородная кислоты и их соли.

Азот: физические и химические свойства. Аммиак. Соли аммония. Оксиды азота. Азотная кислота и ее соли.

Фосфор: физические и химические свойства. Соединения фосфора: оксид фосфора (V), ортофосфорная кислота и ее соли.

Углерод: физические и химические свойства. Аллотропия углерода: алмаз, графит, карбин, фуллерены. Соединения углерода: оксиды углерода (II) и (IV), угольная кислота и ее соли.

Демонстрации. Образцы галогенов - простых веществ. Взаимодействие галогенов с натрием, алюминием. Вытеснение хлором брома или йода из растворов их солей. Взаимодействие серы с металлами, водородом и кислородом. Взаимодействие концентрированной азотной кислоты с медью. Поглощение углем растворенных веществ или газов. Восстановление меди из ее оксида

углем. Образцы природных соединений хлора, серы, фосфора, углерода, кремния. Образцы важнейших для народного хозяйства сульфатов, нитратов, карбонатов, фосфатов. Образцы стекла, керамики, цемента.

Лабораторные опыты с применением оборудования «Точка роста»

Получение, собирание и распознавание водорода. Исследование поверхностного натяжения воды. Растворение перманганата калия или медного купороса в воде. Гидратация обезвоженного сульфата меди (II). Изготовление гипсового отпечатка. Ознакомление с коллекцией бытовых фильтров и изучение инструкции домашнего бытового фильтра. Ознакомление с составом минеральной воды. Качественная реакция на галогенид-ионы. Получение, собирание и распознавание кислорода. Горение серы на воздухе и кислороде. Свойства разбавленной серной кислоты. Изучение свойств аммиака. Распознавание солей аммония. Свойства разбавленной азотной кислоты. Взаимодействие концентрированной азотной кислоты с медью. Распознавание - фосфатов. Горение угля в кислороде. Получение, собирание и распознавание углекислого газа. Получение угольной кислоты и изучение ее свойств. Переход карбоната в гидрокарбонат. Разложение гидрокарбоната натрия. Получение кремневой кислоты и изучение ее свойств.

Практические работы.

- № 2. Изучение свойств соляной кислоты
- №3. Изучение свойств серной кислоты
- №4. Получение аммиака и изучение его свойств
- №5. Получение углекислого газа. Качественная реакция на карбонат- ион

Предмет изучения органической химии. Первоначальные сведения о строении органических веществ. Особенности органических веществ. Основные положения теории химического строения А.М. Бутлерова. Углеводороды: метан, этан, этилен. Источники углеводородов:природный газ, нефть, уголь. Понятие гомологического ряда. Кислородсодержащие соединения: спирты (метанол, этанол, глицерин), карбоновые кислоты (уксусная кислота, аминоуксусная кислота, стеариновая и олеиновая кислоты). Биологически важные вещества: жиры, углеводы: глюкоза, белки. Химическое загрязнение окружающей среды и его последствия.

Демонстрации с применением оборудования «Точка роста»

Модели молекул метана, этана, пропана, этилена и ацетилена. Взаимодействие этилена с бромной водой и раствором перманганата калия. Общие химические свойства кислот на примере уксусной кислоты. Качественная реакция на многоатомные спирты. *Лабораторные опыты*. Качественные реакции на белки.

Металлы и их соединения(17 ч)

Положение металлов в периодической системе химических элементов Д.И. Менделеева. Металлы в природе и общие способы их получения. Общие физические свойства металлов. Общие химические свойства металлов: реакции с неметаллами, кислотами, солями. Электрохимический ряд

напряжений металлов. Щелочные металлы и их соединения. Щелочноземельные металлы и их соединения. Алюминий. Амфотерность оксида и гидроксида алюминия. Железо. Соединения

железа и их свойства: оксиды, гидроксиды и соли железа (II и III).

Демонстрации. Образцы щелочных и щелочноземельных металлов. Образцы сплавов. Взаимодействие натрия, лития и кальция с водой. Взаимодействие натрия и магния с кислородом. Взаимодействие металлов с неметаллами. Получение гкдроксидов железа (II) и (III).

Лабораторные опыты с применением оборудования «Точка роста»

Взаимодействие растворов кислот и солей с металлами. Ознакомление с рудами железа. Окрашивание пламени солями щелочных металлов. Взаимодействие кальция с водой. Получение гидроксида кальция и исследование его свойств. Получение гидроксида алюминия и исследование его свойств. Взаимодействие железа с соляной кислотой. Получение гидроксидов железа (II) и (III) и исследование их свойств.

Практическая работа № **6.** «Получение жесткой воды и способы ее устранения». **Практическая работа** № **7** . Решение экспериментальных задач по теме «Металлы и их соединения».

Предмет изучения органической химии. Первоначальные сведения о строении органических веществ. Особенности органических веществ. Основные положения теории химического строения А.М. Бутлерова. Углеводороды: метан, этан,

этилен. Источники углеводородов:природный газ, нефть, уголь. Понятие гомологического ряда. Кислородсодержащие соединения: спирты (метанол, этанол, глицерин), карбоновые кислоты (уксусная кислота, аминоуксусная кислота, стеариновая и олеиновая кислоты). Биологически важные вещества: жиры, углеводы: глюкоза, белки. Химическое загрязнение окружающей среды и его последствия.

Демонстрации с применением оборудования «Точка роста»

Модели молекул метана, этана, пропана, этилена и ацетилена. Взаимодействие этилена с бромной водой и раствором перманганата калия. Общие химические свойства кислот на примере уксусной кислоты. Качественная реакция на многоатомные спирты. *Лабораторные опыты*. Качественные реакции на белки.

Обобщение знаний по химии за курс основной школы (7 ч)

Физический смысл порядкового номера элемента в периодической системе химических элементов Д. И. Менделеева, номеров периода и группы. Закономерности изменения свойств элементов и их соединений в периодах и группах в свете представлений о строении атомов элементов. Значение периодического закона.

Типы химических связей и типы кристаллических решеток. Взаимосвязь строения и свойств веществ.

Классификация химических реакций по различным признакам (число и состав реагирующих и образующихся веществ; тепловой эффект; использование катализатора; направление; изменение степеней окисления атомов).

Простые и сложные вещества. Металлы и неметаллы. Генетические ряды металла, неметалла и переходного металла. Оксиды (основные, амфотерные и кислотные), гидроксиды (основания, амфотерные гидроксиды и кислоты) и соли: состав, классификация и общие химические свойства в свете теории электролитической диссоциации и представлений о процессах окисления-восстановления.

Тематическое планирование в 9 классе

No		Все го часов	В том числе		
п/п	Наименование разделов		Уроки	Практически е	Контрольны е
				работы	работы
1.	Повторение и обобщение сведений по курсу 8 класса. Химические реакции	15	13	1	1
2.	Неметаллы и их соединения	27	22	4	1
3.	Металлы и их соединения	17	14	2	1
4.	Обобщение знаний по химии за курс основной школы	7	6		1
	Итого:	68	57	7	4

5. ПРИЛОЖЕНИЕ

• График контрольных и практических работ в 8 классе

N₂	Тема	Дата
урок		
a		
5	Практическая работа №1 «Правила техники безопасности при работе в химическом кабинете».	
6	Практическая работа №2. «Наблюдения за изменениями, происходящими с горящей свечой».	
16	Контрольная работа №1 «Атомы химических элементов»	

32	Практическая работа №3«Анализ почвы и воды»	
36	Практическая работа №4 «Приготовление раствора сахара с заданной массовой долей растворенного вещества».	
37	Контрольная работа №2 «Соединения химических элементов»	
46	Практическая работа №5 «Признаки химических реакций»	
48	Контрольная работа №3 «Изменения, происходящие с веществами».	
61	Практическая работа № 6. «Свойства кислот, оснований, оксидов и солей».	
62	Практическая работа № 7. «Решение экспериментальных задач».	
68	Итоговая контрольная работа.	

• График контрольных и практических работ в 9 классе

Nº	Тема	Дата
урока		
13	Практическая работа № 1 «Решение экспериментальных задач по	
	теме «Электролитическая диссоциация».	
15	Контрольная работа № 1 по теме: «Повторение - обобщение сведений	
	по курсу 8 класса. Химические реакции».	
19	Практическая работа № 2 «Изучение свойств соляной кислоты».	
23	Практическая работа № 3 «Изучение свойств серной кислоты».	
26	Практическая работа № 4 «Получение аммиака и его свойств».	
32	Практическая работа № 5 «Получение углекислого газа и изучение	
	его свойств».	
42	Контрольная работа №2 по теме «Неметаллы и их соединения».	
50	Практическая работа № 6 «Получение жесткой воды и способы ее	
	устранения».	
54	Практическая работа №7 «Решение экспериментальных задач по	
	теме «Металлы».	
59	Контрольная работа №3 по теме «Металлы».	

• Контрольно-измерительные материалы с критериями оценивания

1. Оценка устного ответа

Отметка «5»:

- ответ полный и правильный на основании изученных теорий;
- материал изложен в определенной логической последовательности, литературным языком;
- ответ самостоятельный.

Ответ «4»;

- ответ полный и правильный на сновании изученных теорий;
- материал изложен в определенной логической последовательности, при этом допущены дветри несущественные ошибки, исправленные по требованию учителя.

Отметка «3»:

- ответ полный, но при этом допущена существенная ошибка или ответ неполный, несвязный.

Отметка «2»:

- при ответе обнаружено непонимание учащимся основного содержания учебного материала или допущены существенные ошибки, которые учащийся не может исправить при наводящих вопросах учителя, отсутствие ответа.

2. Оценка умений решать расчетные задачи

Отметка «5»:

- в логическом рассуждении и решении нет ошибок, задача решена рациональным способом;

Отметка «4»:

- в логическом рассуждении и решения нет существенных ошибок, но задача решена нерациональным способом, или допущено не более двух несущественных ошибок.

Отметка «3»:

- в логическом рассуждении нет существенных ошибок, но допущена существенная ошибка в математических расчетах.

Отметка «2»:

- имеется существенные ошибки в логическом рассуждении и в решении;
- отсутствие ответа на задание.

3. Оценка экспериментальных умений

Оценка ставится на основании наблюдения за учащимися и письменного отчета за работу.

Отметка «5»:

- работа выполнена полностью и правильно, сделаны правильные наблюдения и выводы;

- эксперимент осуществлен по плану с учетом техники безопасности и правил работы с веществами и оборудованием;
- проявлены организационно трудовые умения, поддерживаются чистота рабочего места и порядок (на столе, экономно используются реактивы).

Отметка «4»:

- работа выполнена правильно, сделаны правильные наблюдения и выводы, но при этом эксперимент проведен не полностью или допущены несущественные ошибки в работе с веществами и оборудованием.

Отметка «3»:

- работа выполнена правильно не менее чем наполовину или допущена существенная ошибка в ходе эксперимента в объяснении, в оформлении работы, в соблюдении правил техники безопасности на работе с веществами и оборудованием, которая исправляется по требованию учителя.

Отметка «2»:

- допущены две (и более) существенные ошибки в ходе: эксперимента, в объяснении, в оформлении работы, в соблюдении правил техники безопасности при работе с веществами и оборудованием, которые учащийся не может исправить даже по требованию учителя;
- работа не выполнена, у учащегося отсутствует экспериментальные умения.

4. Оценка реферата.

Реферат оценивается по следующим критериям:

- соблюдение требований к его оформлению;
- необходимость и достаточность для раскрытия темы приведенной в тексте реферата информации;
- умение обучающегося свободно излагать основные идеи, отраженные в реферате;
- способность обучающегося понять суть задаваемых членами аттестационной комиссии вопросов и сформулировать точные ответы на них.

5. Оценка письменных контрольных работ

Отметка «5»:

- ответ полный и правильный, возможна несущественная ошибка.

Отметка «4»:

- ответ неполный или допущено не более двух несущественных ошибок.

Отметка «3»:

- работа выполнена не менее чем наполовину, допущена одна существенная ошибка и при этом две-три несущественные.

Отметка «2»:

- работа выполнена меньше чем наполовину или содержит несколько существенных ошибок;

- работа не выполнена.

При оценке выполнения письменной контрольной работы необходимо учитывать требования единого орфографического режима.

5. Оценка тестовых работ

Тесты, состоящие из пяти вопросов можно использовать после изучения каждого материала (урока). Тест из 10-15 вопросов используется для периодического контроля. Тест из 20-30 вопросов необходимо использовать для итогового контроля.

При оценивании используется следующая шкала:

для теста из пяти вопросов

- нет ошибок оценка «5»;
- одна ошибка оценка «4»;
- две ошибки оценка «3»;
- три ошибки оценка «2».

Для теста из 30 вопросов:

- 25-30 правильных ответов оценка «5»;
- 19-24 правильных ответов оценка «4»;
- 13-18 правильных ответов оценка «3»;
- меньше 12 правильных ответов оценка «2».

6. РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ПРОГРАММЫ.

1. Литература, используемая учителем:

- основная литература
- 1. Габриелян О.С. Программа курса химии для 8-11 классов общеобразовательных учреждений.
- М.: Дрофа;
- 2. Габриелян О.С. Химия: 8 класс: учебник для общеобразовательных учреждений. М.: Дрофа.
- дополнительная литература
- 1. Габриелян О.С. Изучаем химию в 8 кл.: дидактические материалы / О.С. Габриелян, Т.В. Смирнова. М.: Блик плюс
- 2. Химия: 8 класс: контрольные и проверочные работы к учебнику О.С. Габриеляна «Химия. 8 класс» / О.С. Габриелян, П.Н. Березкин, А.А. Ушакова и др. М. : Дрофа;
- 3. Габриелян О.С., Вискобойникова Н.П., Яшукова А.В. Настольная книга учителя. Химия. 8 кл.: Методическое пособие. М.: Дрофа;
- 4. Габриелян О.С., Рунов Н.Н., Толкунов В.И. Химический эксперимент в школе. 8 класс. М.: Дрофа

5. Алхимик (http://www.alhimik.ru/) - один из лучших сайтов русскоязычного химического Интернета ориентированный на учителя и ученика, преподавателя и студента.

2. Литература, рекомендуемая для учащихся.

- основная литература

Габриелян О.С. Химия: 8 класс: учебник для общеобразовательных учреждений. – М.: Дрофа.

- дополнительная литература
- 1. Журнал «Химия в школе»;
- 2. Контрен Химия для всех (http://kontren.narod.ru). информационно-образовательный сайт для тех, кто изучает химию, кто ее преподает, для всех кто интересуется химией.
- 3. Алхимик (http://www.alhimik.ru/) один из лучших сайтов русскоязычного химического Интернета ориентированный на учителя и ученика, преподавателя и студента.
- 4. Энциклопедический словарь юного химика

3. Медиаресурсы.

- CD «Неорганическая химия», издательство «Учитель»
- CD «Школа Кирилла и Мефодия», издательство «Учитель»
- Химия. Просвещение «Неорганическая химия»,. 8 класс. (на 2-х дисках)
- Химия (8-11 класс). Виртуальная лаборатория (учебное электронное издание)

4. Химическое оборудование ("Точка роста").

Наборы химических реактивов

- Набор № 22 ОС Углеводы. Амины
- Набор № 2 ОС Кислоты
- Набор "Соединения марганца"
- Набор " Кислородосодержащие органические вещества"
- Набор "Углеводороды"
- Набор "Кислоты органические"
- Набор № 9 ОС "Галогениды"
- Набор "Нитраты"
- Набор "Фосфаты. Силикаты"
- Набор "Индикаторы"
- Набор "Кислоты"
- Набор "Огнеопасные вещества"
- Набор "Сульфаты, сульфиды, сульфиты"
- Набор "Карбонаты"
- Набор "Гидроксиды"
- Набор №5 ОС " Металлы (малый) 2 шт.
- Набор № 8 ОС "Галогены"
- Набор "Щелочные и щелочноземельные металлы" (2 шт.)
- Набор № 4 ОС "Оксиды металлов"

- Набор № 15 ОС "Соединения хрома"
- Набор № 13 ОС " Ацетаты. Роданиды. Цианиды."

Комплект коллекций

- металлы № 3351
- шкала твердости № 3354
- топливо № 6024
- минералы и горные породы
- пластмассы № 3352
- чугун и сталь № 3353
- каучук и продукты его переработки № 1240
- волокна № 4211
- нефть и продукты её переработки № 5799
- каменный уголь и продукты его переработки №5948
- минеральные удобрения № 6025

Демонстрационное и лабораторное оборудование

- Баня комбинированная лабораторная
- Комплект трубок газоотводных (3 шт.)
- Комплект мерных колб
- Микроскоп Levenhuk Rainbow монокулярный № 69037 (3 шт.)
- Набор для моделирования молекул органических соединений (4 шт.)
- Набор инструментов препаровальных (Зшт.)
- Набор по электролизу (демонстрационный)
- Набор банок для хранения твердых веществ (3 шт.)
- Набор флаконов 30 мл. для хранения растворов реактивов (3 шт.)
- Набор чашек Петри (3 шт.)
- Плита электрическая "Василиса"
- Прибор для получения и отбора газов лабораторный (3 шт.)
- Прибор для опытов по химии с электрическим током (лабораторный)
- Столик подъемный
- Термометр цифровой MS-6500